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Abstract

Asupersonic dusty gas flowover a blunt body is considered. Themathematicalmodel of the two-phase gas–
particle flow takes into account the inter-particle collisions and the two-way coupling effects. The carrier gas is
treated as a continuum, the averaged flow field of which is described by the complete Navier–Stokes equations
with additional source termsmodeling the reverse action of the dispersed phase. The dispersed phase is treated
as a discrete set of solid particles, and its behavior is described by a kinetic Boltzmann-type equation. Particles
impinging on the body surface are assumed to bounce from it. Numerical analysis is carried out for the cross-
wise flow over a cylinder. The method of computational simulation represents a combination of a CFD-
method for the carrier gas and a Monte Carlo method for the ‘‘gas’’ of particles. The dependence of the fine
flow structure of the continuous and dispersed phases upon the free stream particle volume fraction ap1 and
the particle radius rp is investigated, particularly in the shock layer and in the boundary layer at the body sur-
face. The particle volume fraction ap1 is varied from a negligibly low value to the value ap1 = 3 · 105 at which
inter-particle collisions and two-way coupling effects are simultaneously essential. Particular attention has
been given to the particles of radii close to the critical value rp*, because in this range of particle size the behav-
ior of the particles and their effect on the carrier gas flow are not yet completely understood. An estimate of the
turbulent kinetic energy produced by the particles in the shock layer is obtained.
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mailto:benoit.oesterle@esstin.uhp-nancy.fr


A.N. Volkov et al. / International Journal of Multiphase Flow 31 (2005) 1244–1275 1245
Keywords: Dusty gas; Supersonic flow; Blunt body; Boundary layer; CFD/Monte Carlo simulation; Inter-particle
collisions; Two-way coupling effects; Turbulence modulation
1. Introduction

The effect of a high-speed two-phase gas–particle flow on a body is of significant interest in
many applications such as aircraft and turbine design, industrial processing, etc. As is known,
the presence of particles in the free stream, even if their concentration is very low, modifies the
flow properties compared with those of a pure gas.

For given body shape and flow parameters, there is a critical value of the particle radius rp*
such that particles with smaller radii are decelerated so strongly in the flow field ahead the body
that they do not impinge on the body surface (Fuchs, 1964). Particles with radii more than rp*
impinge on the body and bounce off the body surface. If the particle concentration in the free
stream is not too low, the reflected particles can collide with the incident ones, resulting in the
formation of a near-wall layer in which particles move chaotically, colliding with each other.
The theoretical a priori estimates show (Tsirkunov, 1993; see also Tsirkunov, 2001) that in the
case of coarse-grained particles (the radii of which are much more than rp*) the collisions between
incident and reflected particles in the flow over a blunt body can play a noticeable role at very low
particle volume fraction in the free stream (at ap1 � 10�6). Moreover, the collisions in this case
come into play at much lower particle concentration (roughly speaking, 10 times lower) than that
at which the reverse effect of the dispersed phase on the carrier gas flow becomes essential. This
enables to use the model of one-way coupled flow with particle–particle collisions in a rather wide
range of ap1. On the other hand, this means that a two-way coupled flow model without taking
account of inter-particle collisions may be physically incorrect. Nevertheless, it may be mentioned
here that two-way coupled flow models with collisionless ‘‘gas’’ of particles (Crowe, 1982; Nig-
matulin, 1990) were used to study dusty gas flows with coarse-grained particles over blunt bodies
in earlier works (e.g., Golovachov and Schmidt, 1980; Osiptsov, 1985; Ramm, 1988; Ishii et al.,
1990).

The importance of collisions between particles in two-phase gas–solid flows has been empha-
sized by many researchers, mainly in studies of flows in pipes and channels (e.g., Tanaka and
Tsuji, 1991; Oesterlé and Petitjean, 1993; Sommerfeld, 1995; Sakiz and Simonin, 2001) and also
in analyses of particle dispersion in homogeneous isotropic turbulence (e.g., Zhou et al., 1998;
Sommerfeld, 2001). The effect of inter-particle collisions on the wall erosion and heat transfer
by particles in an impinging particle-laden jet was studied numerically with the use of the Direct
Simulation Monte Carlo (DSMC) method by Kitron et al. (1988).

The paper by Volkov and Tsirkunov (1996) was apparently the first one concerned with the
DSMC analysis of inter-particle collisions in the pre-calculated carrier gas flow over a body.
Later, Volkov and Tsirkunov (2000) developed the rigorous kinetic model for a ‘‘gas’’ of inelas-
tically and frictionally colliding particles which move in the carrier gas flow. Quite recently, a
complete mathematical and computational model for gas–particle flows over bodies with taking
account of the inter-particle collisions and the reverse effect of the dispersed phase on the carrier
gas was developed (Volkov and Tsirkunov, 2002).
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The objective of the present work is to clarify the role of inter-particle collisions and two-way
coupling effects in a dusty-gas flow over a blunt body, in particular inside the boundary layer.

The paper describes in detail the models of the gas and dispersed phase flows, including the gas–
particle interactions, the particle–particle collisions and the particle–wall impact interactions.

The main assumptions accepted in the present study are the following:

• The particle concentration is low enough for the mutual aerodynamic influence between parti-
cles to be negligible.

• The carrier gas is treated as a continuum, the averaged flow field of which is described by the
modified complete Navier–Stokes equations.

• The dispersed phase is treated as a discrete set of solid particles which are rigid spheres of equal
radii rp. Particles can interact with each other only through binary collisions. Inter-particle
collisions are considered as inelastic and frictional ones.

• The behavior of the set of particles may be described in terms of the one-particle distribution
function f1 which satisfies a kinetic Boltzmann-type equation.

• The action of the carrier gas on every individual particle reduces to some force, torque and heat
flux, which can be calculated from the results obtained for an unbounded gas flow around a
single particle.

• The reverse action of the particles on the gas can be determined as the sum of the actions of
individual particles.

The listed assumptions are not in conflict with each other and they are valid in the flow
considered.

For the numerical analysis, a cross-wise supersonic dusty gas flow over a cylinder is taken as an
example. The fine flow structure of each phase is studied depending on the free stream particle
volume fraction ap1 and the particle radius rp. The computational flow model represents a com-
bination of a CFD-method for the carrier gas and a Monte Carlo method for the ‘‘gas’’ of par-
ticles. The numerical results illustrate many important features which are common for high-speed
two-phase flows over blunt bodies.
2. The model of gas–solid particle flow

2.1. The model of collision between two particles

The main assumption in the formulation of the collision model of a pair of identical dispersed
particles is the absence of any persistent particle deformation during a collision. This makes it pos-
sible to derive the following relations expressing the particle translational vi and rotational xi

velocity vectors after the collision in the form proposed by Oesterlé and Petitjean (1993)
vþ1 ¼ v�1 þ J

mp

; vþ2 ¼ v�2 � J

mp

; xþ
k ¼ x�

k þ rp
Ip
n� J; k ¼ 1; 2; ð1Þ
where the superscripts ‘‘�’’ and ‘‘+’’ denote the particle parameters before and after the collision,
respectively; rp is the particle radius, mp ¼ ð4=3Þpq�

pr
3
p and Ip ¼ ð2=5Þmpr2p are the mass and the
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moment of inertia of a particle; q�
p is the particle material density; n is the unit vector directed from

the center of the first particle to the center of the second particle; J is the impulse of forces acting
at the contact point of the particle surfaces, determined using an additional hypothesis describing
the forces acting at the contact point. Following Babukha and Shraiber (1972), we assume that the
relative velocity vectors of the particle surfaces at the contact point, u = v2 � v1 + rpn · (x1 + x2),
before and after the collision, are connected by u+ = �apn(u

� Æ n)n + apt(u
� � (u� Æ n)n), where apn

and apt denote the restitution ratios of the normal and tangential components of u. From physical
point of view, these coefficients, whose values belong to the range 0 6 apn, japtj 6 1, account for
the inelasticity of collisions and the friction between particle surfaces. The impulse J can finally be
expressed as
J ¼ mp

1þ apn
2

ðu� � nÞ þ 1� apt
7

ðu� � ðu� � nÞnÞ
� �

. ð2Þ
According to the results of Sun and Chen (1988) we can neglect the contact heat transfer be-
tween particles because the contact area and the impact duration are too small. Nevertheless
the particle temperature Tk can change during a collision due to transformation of the part DK
of kinetic energy into thermal energy Uk of particles, with DK ¼ K�

1 þ K�
2 � ðKþ

1 þ Kþ
2 Þ,

Kk ¼ mpv
2
k=2þ Ipx2

k=2; k = 1, 2. As the particle absolute temperature increases strongly inside
the shock layer, the temperature dependence of the particle material specific heat c�p has to be
taken into account. It is written in the form
c�pðT Þ ¼ ac � T 3 þ bc � T 2 þ Cc � T þ dc; ð3Þ

where ac, bc, cc and dc are empirical constants. Assuming that the additional heat energy distrib-
utes equally between the two particles, we have Uþ

k ¼ U�
k þ DK=2;Uk ¼ mp

R T k

0
c�pðT ÞdT . Typically

the change in particle temperature during a single collision is small enough for the corresponding
change in particle specific heat to be neglected, so that
Tþ
k ¼ T�

k þ DK
2mpc�ðT�

k Þ
; k ¼ 1; 2. ð4Þ
Denoting yi = (vi, xi, Ti), the relations (1) and (4) can be formally written in the compact form
yþ1 ¼ yþ1 ðy�1 ; y�2 ; nÞ; yþ2 ¼ yþ2 ðy�1 ; y�2 ; nÞ. ð5Þ
2.2. Kinetic description of the collisional dispersed phase

Under the above stated assumptions the state of the ith particle is determined uniquely by the
set of its phase coordinates xi = (ri, vi, xi, Ti) = (ri, yi), where ri is the position vector of the
particle in the physical space.

Let r be the position vector of an arbitrary point in the two-phase flow, t the time. By analogy
with the kinetic theory of gases we introduce the one-particle distribution function f1 = f(x1, t) =
f(r1, y1, t) normalized by the numerical concentration of particles np(r, t)
npðr; tÞ ¼
Z

f ðr; y1; tÞdy1.
This function describes the state of the dispersed phase.
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Change of the phase coordinates is caused by particle–particle collisions and gas–particle inter-
action. As stated by Volkov and Tsirkunov (2000), in dense flows with coarse-grained particles the
characteristic length and time of particle collisions are several orders smaller than the length and
time of particle velocity relaxation in the gas flow field. It is therefore possible to consider the in-
ter-particle collisions as instantaneous ones, and, hence, to take them into account in the dispersed
phase kinetic model through the usual collisional integral generalized to the case of inelastically
colliding and rotating particles. Under these conditions the action of the carrier gas on a particle
can be considered as an external action that determines the particle system evolution. This argu-
ment was used by Volkov and Tsirkunov (2000) to derive the basic kinetic equation for the N-par-
ticle distribution function. From this basic kinetic equation, in the thermodynamic limit, i.e. N,
V!1 but N/V = const, where N is the number of particles, V is the volume where they are lo-
cated, and under the assumption similar to molecular chaos, the Boltzmann-type kinetic equation
in terms of f1 can be derived in the form
of1
ot

þ o

or1
� ðv1f1Þ þ

o

ov1
� f1

mp

f1

� �
þ o

ox1

� l1

Ipf1

� �
þ o

oT 1

q1
mp

c�pf1

� �
¼ I12ðf1Þ; ð6Þ

I12ðf1Þ ¼ ð2rpÞ2
Z Z

g.n60

f �
1 f

�
2

J
� f1f2

� �
jg.nj sin vdvdedy2. ð7Þ
Here f1 and l1 are the force and the moment exerted on a particle by the carrier gas, q1 the
complete heat flux through the particle surface; g = v2 � v1 the relative velocity vector
between the two particles; v and e the spherical angular coordinates defined in such a way that
n = cosvi + sinvcos ej + sinv sin ek, where (i, j, k) is the basis of the Cartesian coordinate system
(x, y, z); f2 = f(r1, y2, t), f �

1 ¼ f ðr1; y�1 ðy1; y2; nÞ; tÞ and f �
2 ¼ f ðr1; y�2 ðy1; y2; nÞ; tÞ. The functions

y�k ðy1; y2; nÞ (k = 1, 2), which are inverse to the ones given by (5), determine the values of the phase
coordinates of a pair of particles before a collision with given direction of center line n in order
that they acquire the velocities and temperature corresponding to y1 and y2.

The parameter J in the collision integral I12(f1) takes into account the phase volume reduction
due to the inelasticity of the collision and is equal to
J ¼ g � n
g� � n J 1

����
����; J 1 ¼

oðyþ1 ; yþ2 Þ
oððy�1 ; y�2 Þ

����
���� 6¼ 0.
Thus the Jacobian J1 of the transformation (5) is assumed not to be equal to zero. Under this con-
dition the relations (5) can be solved in terms of the particle parameters before collision. For the
particle–particle collision model described in the previous section one can derive J 1 ¼ �apna2pt and
J ¼ a2pna

2
pt.

The macroparameters of the dispersed phase are the object of main interest in practice. Let
[U](r, t] denote the total value per unit volume of the gas–particle mixture of any quantity
U = U(x1) of an individual particle. By analogy with the kinetic theory of gases the macropara-
meter [U](r, t) can be expressed as a statistically averaged value
½U�ðr; tÞ ¼
Z

Uðr; y1Þf ðr; y1; tÞdy1. ð8Þ
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Then the numerical and volumetric concentrations of the dispersed phase are defined as np = [1],
ap ¼ ð4=3Þpr3pnp. The ratio of the average value of the molecular parameter in the unit volume of
the gas–particle mixture, [U], to the average number of particles in the unit volume, np, gives the
average value of the molecular parameter [U]1 = [U]/np for a single particle. For instance, the
macroscopic velocity of the particle phase up is determined by up = [v1]1.

The flux per unit surface area [U]w of the physical parameter U from the dispersed phase
towards the stationary body surface at a point rw is defined as follows:
½U�wðrw; tÞ ¼ �
Z

ðv1.nwÞUðrw; y1Þf ðrw; y1; tÞdy1. ð9Þ
Here nw is the unit vector normal to the surface, directed from the body to the fluid. By analogy
with (8) the value of the flux density can be formally represented in the form [U]w = [�(v1 Æ nw)U].
For example, the quantity ew giving the upper-bound estimate of the energy flux density from the
dispersed particles to the body surface due to the inelasticity of particle rebound from the surface,
is defined as ew = [K1 + U1]w.

2.3. Gas–particle interaction

Many different models describing the interaction of a carrier gas with individual particles are
known in the literature (see e.g., Nigmatulin, 1990; Crowe et al., 1998). In most cases however,
they are applied to incompressible subsonic flows in pipes or channels. In case of supersonic flow
of viscous gas–particle mixture over bodies it is necessary to take into account the compressibility
of the carrier gas in the flow over a single particle and the rarefaction of the gas flow associated
with the fact that the mean free path of gas molecules can be of the same order as the particle
radius rp.

In general, we should also consider the near-wall effects associated with the non-isothermal
shear flow inside the boundary layer and the constrained flow over a particle near the surface.
The boundary layer effects are usually taken into account by means of additional terms in the
interphase interaction force, namely, the Saffman force, the thermophoretic force and the ‘‘wall
effect’’ (see the paper by Tsirkunov et al., 1994a). A preliminary study was carried out to estimate
the role of these various contributions in the interphase interaction term f1; showing that the ef-
fects of such near-wall forces on the dispersed phase motion are not significant in the range of
parameters considered below. Based on this fact, only the drag force fD and the Magnus lift force
fM that arises from the collision induced spinning motion of the particle are taken into account in
the following, so that
f1 ¼ fD þ fM; ð10Þ

where
fD ¼ 1

2
CDpr2pqjv� v1jðv� v1Þ; fM ¼ Cxpr3pqðx� x1Þ � ðv� v1Þ. ð11Þ
The damping torque l1 and the heat flux q1 through the particle surface are expressed as usually:
l1 ¼
1

2
Clr5pqjx� x1jðx� x1Þ; q1 ¼ 2Nupprpj�ðT � T 1Þ. ð12Þ
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Here v, q, T and j* are the velocity vector, the temperature, the density and the heat conduction
of the carrier gas, and x = (1/2)$ · v.

The coefficients CD, Cx, Cl and Nup in (11) and (12) are defined from semi-empirical correla-
tions in terms of the Mach number M1 ¼ jv� v1j=

ffiffiffiffiffiffiffiffiffiffi
cRT

p
and the Reynolds numbers based on

relative translational velocity Re1 = 2rpqjv � v1j/l and relative rotational velocity Rex1 ¼
4r2pqjx� x1j=l (here R ¼ cp � cv is the gas constant, c = cp/cv, cv and cp are the gas specific heats
under constant volume and constant pressure, respectively, l, is the gas viscosity). The drag coef-
ficient CD is determined by the Henderson (1976) relations CD = CD(Re1, M1, T1/T, c), which
takes into account the inertial effects, the compressibility and the rarefaction of the gas in the flow
over a sphere and is valid in a wide range of Mach number and Reynolds number (i.e.M1 6 6 and
Re1 6 105). The coefficient in the Magnus lift force Cx is expressed by Cx = Cx(Re1, Rex1) for
d = Rex1/Re1 P 0.45, according to the relation given by Oesterlé and Bui Dinh (1998), and
Cx = 1 for d 6 0.45, which is the theoretical solution of Rubinow and Keller (1961). The torque
coefficient Cl = Cl(Rex1) is calculated by the correlations of Dennis et al. (1980), and the Nusselt
number Nup = Nup(Re1, M1, Pr) by the Kavanau formula
Nup ¼
Nu0p

1þ 3:42Nu0pM1=ðRe1PrÞ
; ð13Þ
where Nu0p ¼ 2þ 0:459Re0:551 Pr0:33 is the Nusselt number for the continuum flow regime; the coeffi-
cient of order of the Knudsen number M1/Re1 takes into account the influence of the gas rarefac-
tion on the heat transfer (see Sternin and Shraiber, 1994), and Pr = cpl/j* is the Prandtl number.

2.4. Governing equations for the carrier gas flow

The Navier–Stokes equations for ideal viscous compressible gas are used to describe the carrier
gas ‘‘micro’’ flow in the gaps between particles. They include the continuity, momentum and
energy equations:
oq
ot

þr � ðqvÞ ¼ 0; ð14Þ

o

ot
ðqvÞ þ r � ðqvvÞ ¼ r � R; ð15Þ

o

ot
ðqeÞ þ r � ðqveÞ ¼ �r � qþr � ðR � vÞ. ð16Þ
Here R and q are the stress tensor and the heat flux vector determined by Newton�s and Fourier�s
laws
R ¼ ð�p � ð2=3Þlr � vÞIþ 2lS; q ¼ �j�rT ; ð17Þ

where S is the gas deformation tensor, I the unit (metric) tensor, p the pressure and e the total
energy of the gas, the viscosity l and the heat conduction j� being defined by the Sutherland
formula, i.e.
p ¼ qRT ; e ¼ cvT þ v2

2
; l ¼ ls

T
T s

� �3=2 T s þ Cs

T þ Cs

; j� ¼ cpl
Pr

. ð18Þ
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As usually, we use the hypothesis that in every point r of the flow one can define a physically
infinitesimal control volume D(r) whose length scale is much more than the mean distance
between particles lp but much less than the length scale of the flow R. Then to derive the averaged
equations of the carrier gas we can use the volume average procedure described in details by
Nigmatulin (1990) and Crowe et al. (1998). The volume averaged value �f of any flow parameter
f is defined as
�f ðr; tÞ ¼ 1

V

Z
Dcðr;tÞ

f ð~r; tÞd~r; ac ¼
V c

V
; V c ¼

Z
Dcðr;tÞ

d~r; ð19Þ
where V is the volume of D, Dc the part of control volume free of particles, ac the gas volume
fraction. In addition we introduce the phase averaged {f} and mass averaged hfi values of the
parameter f:
ff gðr; tÞ ¼ 1

V c

Z
Dcðr;tÞ

f ð~r; tÞd~r ¼
�f
ac
; hqi ¼ acfqg; hf i ¼ fqf g

hqi ð20Þ
and represent the velocity v and the temperature T of the carrier gas as the sums of mass-averaged
values hvi and hTi and fluctuations v 0 and T 0: v = hvi + v 0, T = hTi + T 0.

In order to express the averaged values of the derivatives (e.g., of =ox) by means of the deriv-
atives of the averaged values (e.g., o{f}/ox) one can use the integral theorem which leads to
of
ot

¼ o

ot
ðacff gÞ þ

1

V

Z
Sp

f v � nidS;
of
ob

¼ o

ob
ðacff gÞ �

1

V

Z
Sp

fnibdS ðb ¼ x; y; zÞ;
where Sp = ¨Si, Si is the part of the surface of the ith particle immersed within the control volume
D, nib the components of unit vector ni, which is normal to the surface of the ith particle and
directed from the particle to the fluid.

Applying the volume average procedure (19) to all terms in Eqs. (14)–(16) we get the following
averaged equations:
ohqi
ot

þr � ðhqihviÞ ¼ 0; ð21Þ

o

ot
ðhqihviÞ þ r � ðhqihvihviÞ ¼ r � ðacfRgÞ � r � ðhqihv0v0iÞ þPm; ð22Þ

o

ot
ðhqiheiÞ þ r � ðhqihviheiÞ ¼ �r.ðacfqgÞ þ r � ðacfRg � hviÞ þ r � ðacfR � v0gÞ

þPeR þPeq �r � ðhqihvi � hv0v0iÞ � r � hqi v0
ðv0Þ2

2

* + !

�r � ðhqicvhv0T 0iÞ. ð23Þ
Here the source term Pm is the averaged force exerted on the gas by the particles, per unit volume:
Pm ¼ � 1

V

Z
Sp

R � ni dS ¼ � 1

V

X
i

Z
Si

R � nidS ¼ � 1

V

X
i

f i; ð24Þ
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PeR is the power produced by stresses on the particle surfaces, and Peq is the heat flux at the
particle surfaces, both per unit volume:
PeR ¼ � 1

V

Z
Sp

Wi � R � nidS ¼ � 1

V

X
i

ðf i � vi þ li � xiÞ;

Peq ¼ � 1

V

Z
Sp

q � nidS ¼ � 1

V

X
i

qi; ð25Þ
where Wi = vi + rpxi · ni is the velocity at the surface of the ith particle. The average total energy
hei in (23) includes the average kinetic energy of the gas velocity fluctuations k:
hei ¼ hvi2

2
þ k þ cvhT i; k ¼ hðv0Þ2i

2
. ð26Þ
We derive the turbulent kinetic energy equation in the same manner as Kenning and Crowe
(1997). Multiplying Eq. (22) by hvi, the mean kinetic energy equation is obtained, then the
momentum equation (15) multiplied by v is averaged and the mean kinetic energy equation is
subtracted from it, resulting in
o

ot
ðhqikÞ þ r � ðhqihvikÞ ¼ �hqihv0v0i : rhvi þ r � ðacfR.v0gÞ

þ acfRg : rhvi � r � hqi v0
ðv0Þ2

2

* + !
� acfR : rvg þPk; ð27Þ
where it is assumed that the term Pk, defined by
Pk ¼ PeR �Pm � hvi ¼ � 1

V

X
i

ðf i � ðvi � hviÞ þ li � xiÞ; ð28Þ
describes the action of the particles on the gas turbulence. In this expression, it is considered that
the average angular velocity of the gas flow is negligible compared to the angular velocity of a
single particle, so that we avoid having to write the volume averaged angular momentum equation
of the fluid phase.

Subtracting the mean kinetic energy equation and Eq. (27) from Eq. (23) results in the equation
for the average gas temperature:
o

ot
ðhqicvhT iÞ þ r � ðhqihvicvhT iÞ ¼ �r � ðacfqgÞ þ acfR : rvg

� r � ðhqicvhv0T 0iÞ þPeq; ð29Þ
where the term ac{R : $v} describes the dissipation of mechanical energy.
To solve Eqs. (21)–(23), assumptions are required about the terms involving the gas fluctuating

velocity, for example, about the tensor hqihv 0v 0i which is analogous to the Reynolds stress tensor
in turbulent flows. Contrary to low-speed gas–particle flows, for which some models exist that
have been applied successfully for pipe or channel flows (see e.g., Boulet and Moissette, 2002),
there is unfortunately no available theory at present for turbulent supersonic gas–solid flows.
Therefore, bearing in mind that (i) the flow of pure gas is considered below as laminar and (ii)
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the particle volume fraction is low enough (ap = 1 � ac 6 3 · 10�3), we assume that the particle
volume concentration as well as the gas velocity and temperature fluctuations can be neglected
in Eqs. (21)–(23): ac � 1, k � 0, T 0 � 0. In this case one can find from (27) that
{R : $v} = {R} : $hvi + Pk, which means that the work of stresses on the particle surfaces, Pk,
is equal to the rate of additional dissipation of mechanical energy. Combining this relation and
(29) we have
o

ot
ðhqicvhT iÞ þ r � ðhqihvicvhT iÞ ¼ �r � fqg þ fRg : rhvi þPk þPeq; ð30Þ
i.e. the work of stresses on the particle surfaces, which is always positive, increases the gas
temperature. The averaged momentum and energy equations (22) and (23) simplify to
o

ot
ðhqihviÞ þ r � ðhqihvihviÞ ¼ r � fRg þPm; ð31Þ

o

ot
ðhqiheiÞ þ r � ðhqihviheiÞ ¼ �r � fqg þ r � ðfRg � hviÞ þPeR þPeq. ð32Þ
In this case, the flow of the carrier gas is described by Eqs. (21), (31) and (32), where hei, hRi
and {q} are defined by the same relations (17) and (18) as in the pure gas. In addition to this
simple model we estimated the possible turbulence generation by particles on the basis of Eqs.
(21)–(23) and (27) (see Sections 2.6 and 4.3).

2.5. Boundary conditions

Fig. 1 shows a scheme of the computational domain for the plane cross-flow over the circular
cylinder. Here the computational domain ABCD is bounded by the entrance boundary AD, the
plane of symmetry AB, the body surface BC and the exit boundary CD. Let nb denote the unit
vector normal to the boundary ABCD and directed inside the computational domain.

2.5.1. Boundary conditions for the particulate phase
To formulate the boundary-value problem for Eq. (6) it is necessary to set the distribution func-

tion f at every point of the boundary ABCD. From analogy with the kinetic theory of gases (see
e.g., Kogan, 1967), the boundary values of f(r1, v1, x1, T1, t) must be preset for the particles mov-
ing through the boundary into the domain, i.e. v1 Æ nb > 0. At the same time the values of
f(r1, v1, x1, T1, t) for the particles moving through the boundary out of the domain are determined
by the solution inside the domain.

Assuming that the entrance boundary AD of the computational domain is located in the free
stream outside the shock layer, where the particles have the same parameters as the carrier gas,
the following boundary condition can be assigned to AD:
f ðr; y1; tÞ ¼ np1d1ðv1x � V 1Þd1ðv1yÞd1ðv1zÞd3ðx1Þd1ðT 1 � T1Þ ðv1 � nb > 0Þ ð33Þ
where V1, T1 and np1 are the gas velocity and temperature and the particle numerical concen-
tration in the free stream; u1x, u1y, u1z are the components of the particle velocity v1 in the co-
ordinate system (x, y, z) (see Fig. 1), and dn is the n-variable Dirac function.



Fig. 1. Sketch of the flow structure, the computational domain ABCD and the grid.
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At the exit boundary CD the average velocity of particles up is directed towards the outside of
the domain. Since the mean square velocity cp of the particle chaotic motion is much less here than
jupj, as was verified by the computations, the particles moving through this boundary towards the
domain are much less numerous than the particles moving in the opposite direction. Therefore we
can assume that there are no particles moving into the domain through the exit boundary CD:
f(r, y1, t) = 0 for (v1 Æ nb > 0).

At the plane of symmetry AB we use the ordinary symmetry condition extended to the case of a
rotating particle: f(r, y1, t) = f(r, y1s, t) for (v1 Æ nb > 0), where v1s = v1 � 2nb(v1 Æ nb), x1s = x1 �
2nb · (x1 · nb).

At the body surface BC the distribution must satisfy the well-known kinetic boundary condi-
tion (see e.g., Kogan, 1967)
jv1 � nwjf ðrw; y1; tÞ ¼
Z
v�
1
�nw<0

jv�1 � nwjW wðy�1 ! y1jnwÞf ðrw; y�1 ; tÞdy�1 ; ð34Þ
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where v1 Æ nw > 0, rw = Rnw, R is the cylinder radius, and W wðy�1 ! y1jnwÞ is the conditional dis-
tribution density of the particle parameters y1 after reflection from the surface for known values of
the parameters before the collision, y�1 . The density W wðy�1 ! y1jnwÞ is to be calculated on the
basis of the model of inelastic rebound of particles from the body surface. We neglect any surface
roughness that can lead to stochastic dispersion of particles, therefore the particle parameters are
being changed deterministically during the collision, according to the law y1 ¼ yþwðy�1 ; nwÞ. In this
case the density Ww takes the form W wðy�1 ! y1jnwÞ ¼ d7ðy1 � yþwðy�1 ; nwÞÞ.

2.5.2. The model of inelastic rebound of a particle from the body surface
We use the particle–wall collision model proposed by Tsirkunov et al., 1994a,b and extended by

Volkov and Tsirkunov (2000) to the case of three-dimensional particle reflection from a surface
with arbitrary orientation of the translational ðv�1 Þ and rotational ðx�

1 ) velocity vectors of the inci-
dent particle. The model is based on the experimental data by Lashkov (1991) about the restitu-
tion ratios of the normal and tangential velocities of the particle gravity center, awn and awt, which
are assumed to obey the following relations obtained for initially non-rotating corundum particles
and mild steel wall:
awn ¼ 1� 1� exp �anjv�1 j
bn

� �� �
cosu; awt ¼ atu6 þ btu4 þ ctu2 þ d t; ð35Þ
where u is the angle between the incident particle velocity vector v�1 and the wall normal unit
vector nw (u < p/2), and an, bn, at, bt, ct, dt are empirical coefficients. These relations are valid
in a wide range of incident particle velocities: 50 m=s 6 jv�1 j 6 500 m=s.

The particle parameters before and after a collision are denoted herein after by the superscripts
‘‘�’’ and ‘‘+’’, respectively. We introduce the velocity vector at the particle–surface contact point
w�

1 ¼ v�1 � rpx�
1 � nw and the local basis (kw, nw, tw), where kw ¼ nw � w�

1 =jnw � w�
1 j,

tw ¼ kw � nw, and denote by subscripts the vector components in this basis. Then the components
of particle velocities after collision can be calculated by the following relations:
vþ1k ¼ v�1k; xþ
1n ¼ x�

1n; xþ
1t ¼ x�

1t; Tþ
1 ¼ T�

1 ; vþ1n ¼ �awnv�1n;

vþlt ¼
awtv�1t � ð1� awtÞrpx�

1k; u > u�;

awtv�1t � ð2=7Þrpx�
1k; u 6 u�;

(

xþ
1k ¼

5awt�3
2

x�
1k þ 5

2
ðawt � 1Þ v�

1t
rp
; u > u�;

2
7
x�

1k � awt
v�
1t
rp
; u 6 u�;

8<
:

where u is the angle of incidence in the plane (nw, tw), and u* is the root of the equation
awt(u*) = 5/7 (for mild steel u* = 79�, 5�). Assuming that the thermal energy appeared in the pro-
cess of impact is absorbed by the body surface and that the contact heat transfer can be neglected,
the temperature as well as the internal energy of a particle do not change during the collision pro-
cess, hence ew = [K1]w.

2.5.3. Boundary conditions for the carrier gas
Here we set the boundary conditions needed to solve the equation of the carrier gas motion

(21), (31) and (32). At the supersonic entrance boundary AD the gas flow was considered as
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uniform with values of parameters given by vx = V1, vy = 0, q = q1, T = T1. On the symmetry
plane AB the symmetry conditions were laid down as follows: vy = ovx/oy = oq/oy = oT/oy = 0.
At the body surface BC the conditions of impenetrability, absence of slip and equality of the gas
and the given surface temperature Tw were set, i.e. vx = vy = 0, T = Tw.

The gas motion at the exit boundary CD outside of the thin subsonic boundary layer is super-
sonic under the conditions considered further. Therefore in the numerical solving of the viscous
gas motion at the boundary CD, ‘‘soft’’ boundary conditions were used according to which dis-
turbances in the vicinity of CD are assumed to be propagated only downstream. In practice the
gas parameters ~A ¼ ðT ; q; vx; vyÞ at the boundary CD were determined by linear extrapolation
of the same parameters outwards the computational domain, i.e. the condition o2 ~A=ox2 ¼ 0
was used.

2.6. The model of turbulence generation by particles

As described in Section 2.4, the carrier gas flow is computed assuming that velocity fluctuations
are negligible. However, due to their inertia, particles exhibit very large relative velocities just be-
hind the shock wave, therefore the particle Reynolds number in this region may be high enough
for turbulence generation to be significant, due to the modification in velocity gradients associated
with particle wakes. This is the reason why we aim here at assessing the level of turbulent kinetic
energy arising from this phenomenon. To this purpose, Eq. (27) is rearranged to get the transport
equation of the gas turbulent kinetic energy under the usual form:
o

ot
ðhqikÞ þ r � ðhqikÞ ¼ Dþ P þPk � hqiðeþ egÞ; ð36Þ
where P = �hqihv 0v 0i : $hvi is the production term, hv 0v 0i = (2/3)kI � 2mthSi, and D is the diffu-
sion term modeled in a standard way by D = $ Æ (hqimk$k), with mk = m + mt/rk, m = l/hqi,
mt = Clk

2/e, Cl = 0.09, rk = 1. The turbulence-energy dissipation rate is expressed by the sum
e + eg, where the additional term eg is the so-called ‘‘dilatation dissipation’’, which is included
to account for the compressibility effects, and is modeled by eg ¼ 2ek=ðcRhT iÞ, following Sarkar
and Balakrishnan (1990).

In order to estimate the gas turbulence level from (36), the turbulent kinetic energy source term
Pk is expressed according to Eq. (28). This ‘‘full’’ formulation, which is in agreement with the der-
ivation by Crowe (2000) or Simonin and Squires (2001), has to be used here instead of the stan-
dard formulation (Elghobashi and Abou-Arab, 1983; Berlemont et al., 1990) which is known to be
unable to predict any turbulence enhancement since the wake production is neglected. However,
no rotational motion of particles was included in the earlier derivations, and the drag was as-
sumed linear. Here, the particle rotation is taken into account, and we consider the more general
case of non-linear drag force. Following Crowe (2000), the main part of the turbulence-energy dis-
sipation rate, e, in Eq. (36) is expressed by the algebraic relationship e = k3/2/lmp, where lmp is a
hybrid length scale dependent on both an inherent integral length L of turbulence and the average

inter-particle spacing lp ¼ rp
ffiffiffiffiffi
4p
3ap

3

q
� 2

� �
. Kenning and Crowe (1997) defined the hybrid length

scale by lmp = 2Llp/(L + lp), which leads to an erroneous value when one of the two length scales
tends to infinity. Later, Crowe (2000) defined the hybrid length scale by lmp = Llp/(L + lp), an
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expression leading to lmp = L/2 for lp = L, which is also incorrect. Therefore it was decided to use
the simple formula lmp = min(L, lp), which does not suffer from the above mentioned drawbacks.
Since we are dealing here with an initially laminar flow, there is no inherent length scale of tur-
bulence, therefore we have to define L as a characteristic length scale of the dissipation due to
the relative flow around a particle. For low particle Reynolds number Re1, it is known that vis-
cous effects are present up to the Oseen distance rp/Re1, while for higher Re1, the characteristic
length scale of viscous effects can be assumed of the order of the particle diameter 2rp. Thus
we adopt the following expression for the length scale L:
L ¼ 2rp 1þ 1

Re1

� �
;

which meets the asymptotic requirements for small and large particle Reynolds number.
3. Method of computational simulation

The computation simulation of two-way coupled gas–particle flow with inter-particle collisions
was based on the flow model described above. It represents a combination of a CFD-method for
solving the governing equations for the carrier gas and the Direct Simulation Monte Carlo
(DSMC) method for the particle phase. The detailed description of the whole algorithm is given
in the paper by Volkov and Tsirkunov (2002). Here we only outline some important features of
the computational procedure.

In the flow plane, two curvilinear grids, for continuous and dispersed phases, were introduced
in the computational domain ABCD shown in Fig. 1. These grids are fitted to all boundaries of
the calculation domain. The entrance boundary AD was placed outside the shock layer in the
undisturbed flow. Both grids, for gas and particles, were strongly refined near the body contour
to provide high accuracy inside the boundary layer at high Reynolds number Re1. The compu-
tational grid for the gas phase contained 60 cells along the cylinder surface and 240 cells in the
direction normal to the surface. From 30 to 50 cells in the normal direction were located inside
the boundary layer. Depending on the particle radius, the grid used for simulation of the dispersed
phase flow contained from 60 to 120 cells along the surface and from 120 to 240 cells in the normal
direction.

In the numerical algorithm, the dispersed phase was represented as a set of a large number of
simulated particles. The motion and heating of these particles, controlled by the gas–particle inter-
action and the particle–particle collisions, were computed using the DSMC method based on the
kinetic model described in Section 2.2. This method is widely used in rarefied gas dynamics (see,
e.g., Bird, 1994). Simulation of the particle behavior during a time step Dt was splitted into the
stage of collisions between particles in every grid cell and the stage of motion and heating. The
inter-particle collisions were considered as random events and the majorant frequency scheme
(Ivanov and Rogazinsky, 1988) modified by Volkov and Tsirkunov (1996) was used for their sim-
ulation. The motion and heating of the ith particle between collisions were considered as deter-
ministic processes, described by the momentum, angular momentum and energy equations
written along the particle trajectory, together with the kinematic relation for the particle�s position
vector
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dvi
dt

¼ f i

mp

;
dxi

dt
¼ li

Ip
;

dT i

dt
¼ qi

mpc�p
;

dri
dt

¼ vi.
These equations are consistent with the left part of the kinetic equation (6). The current fields of
macroparameters of the dispersed phase defined by (8) were obtained as the averaged values of
parameters of the simulated particles over every cell of the grid. The same procedure was used
to calculate the macroparameters at the body surface defined by (9). The average number of
simulated particles in the computational domain was approximately 1.5 · 106.

The modified Navier–Stokes equations were numerically integrated over a time step Dt using a
finite-volume scheme. Eqs. (21), (31) and (32) were written in the so-called generalized coordinates
in which the computational grid shown in Fig. 1 was orthogonal and uniform. At first, the TVD-
scheme by Harten (see Yee and Harten, 1987) was applied to solve the inviscid part of the carrier
gas equations. Then explicit central finite-difference approximations were used to calculate the
contribution of the ‘‘viscous’’ terms. The gas–particle interaction terms Pm, PeR, and Peq, were
fixed during Dt.

The time step Dt was selected to satisfy the following three conditions: (1) the convergence con-
dition of the finite-volume scheme for the Navier–Stokes equations; (2) Dt must be less than the
average local particle free time between collisions and (3) it must be less than the average time of
particle motion across any cell of the computational grid.

Steady-state flow fields of the dispersed phase and the carrier gas were obtained as the limit of a
time-depending solution at large t. In doing so the macroparameters of the dispersed phase were
obtained by time-averaging the grid cell-averaged parameters of simulated particles over a long
time interval (over several hundred time steps Dt).
4. Computational results and discussion

4.1. Governing parameters

The solution of the boundary-value problem for Eqs. (6), (21), (31) and (32) with the given
boundary conditions and additional relations (1)–(4), (7), (10)–(12), (17), (18), (24) and (25)
depends on 26 parameters, among them 24 were fixed while two ones, the particle radius rp,
and the free stream particle volume fraction ap1, were varied.

In the computational simulation, the carrier gas was air, the particle material was synthetic
corundum, the material of the cylinder was mild steel. The flow parameters and the body size were
similar to those in experiments performed in a supersonic wind tunnel in TsAGI (Vasilevskii et al.,
2001). Values of all governing parameters are given in Table 1. The empirical constants ac, bc, cc,
dc in Eq. (3) and an, bn, at, bt, ct, dt in Eq. (35) were determined from the experimental data. The
restitution coefficients arn and art in the particle–particle collision model cannot be determined
with reasonable accuracy nowadays neither from experiments nor theoretically, therefore their
values were taken from physical considerations. In Table 1, T 0 ¼ T1ð1þ ðc� 1ÞM2

1=2Þ is the
adiabatic stagnation temperature.

The carrier gas flow parameters correspond to the Mach number M1 = 2 and the Reynolds
number Re1 = 2Rq1V1/l1 = 105. The lower bound of the particle radius (rp = 0.2 lm) corre-



Table 1
Input data for calculations

Parameter Numerical value

c 1.4
R (J/(kg K)) 286.9
Pr 0.76
ls (kg/ms) 1.71 · 10�5

Ts (K) 273
Cs (K) 117
V1 (m/s) 494.5
q1 (kg/m3) 0.104
T1 (K) 151.7
R[m] 0.01
Tw/T0 0.5
q�p (kg/m3) 3950
ac (J/(kg K4)) 3.04 · 10�6

bc (J/(kg K3)) �7.01 · 103

cc (J/(kg K2)) 5.54
dc (J/(kg K)) �341.8
arn 0.5
art 0.9
bn 0.61
an½ðs=mÞbn � 0.1
at 0.0219
bt 0.114
ct �0.288
dt 0.69
rp (lm) 0.2, . . . , 10
ap1 10�6, . . . , 3 · 10�5
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sponds to very fine particles and the upper bound (rp = 10 lm) to coarse-grained ones. Accord-
ingly, the ‘‘formal’’ particle Stokes number St1 ¼ 2q�

pr
2
pV 1=ð9l1RÞ lies in the range

0.168 6 St1 6 420. For the values of ap1 in Table 1, the particle mass concentration C1, defined
as the ratio of the bulk density of the dispersed phase to the mixture density, varies from 3.6% to
53%. Most of the computational results were obtained for the following four cases: smallest con-
centration, largest concentration and also for ap1 = 3 · 10�6 (C1 = 10%) and ap1 = 10�5

(C1 = 27.5%).

4.2. Particle flow structure

Particle phase flow patterns were found to be quite different for fine particles with radius smal-
ler than the critical value rp* and for larger particles. All other parameters being fixed, the critical
radius depends on ap1 because the carrier gas flow field is affected by ap1 due to the reverse effect
from the dispersed phase. However this dependence is weak, e.g., rp* � 0.283 lm for ap1 ! 0,
rp* � 0.3 lm for ap1 = 3 · 10�6, rp* � 0.35 lm for ap1 = 10�5. The role of inter-particle colli-
sions is negligible for fine particles, whereas the effect of collisions on the behavior of larger par-
ticles increases with increasing ap1 and becomes essential even at very low particle volume



Fig. 2. Distribution of (a) relative particle volume fraction ~ap ¼ ap=ap1 and (b) local Knudsen number Knp in the ‘‘gas’’
of particles along the stagnation streamline. rp = 1 lm. Curve 1, ap1 = 10�6; 2, ap1 = 3 · 10�6; 3, 5, ap1 = 10�5; 4,
ap1 = 3 · 10�5. The dashed curve 5 was obtained without collisions between particles.

1260 A.N. Volkov et al. / International Journal of Multiphase Flow 31 (2005) 1244–1275
fraction in the free stream, as illustrated by Fig. 2. The distribution of the relative particle volume
fraction ap/ap1 along the stagnation streamline is modified qualitatively when ap1 increases from
10�6 to 3 · 10�5 (see Fig. 2(a)). At lower ap1, the distribution is very close to that for collisionless
particle phase flow (ap1 ! 0), as shown by the dashed curve 5. In this limiting case, it is known
that singular surfaces appear in the flow of the particle phase over a blunt body (Tsirkunov et al.,
2002). These surfaces are the envelopes of trajectories of particles reflected from the body surface.
Theoretically, the particle concentration on these envelopes tends to infinity, however in the com-
putational simulations we have only sharp peaks. The envelopes of trajectories after the first and
second reflections of particles from the body are labeled AA and BB in Fig. 3(a), respectively. The
sharp peaks on the dashed line 5 in Fig. 2(a) correspond to the location of these envelopes at the
stagnation streamline. At higher ap1, the particle volume fraction increases monotonically to-
wards the body surface, as shown by curves 3 and 4 in Fig. 2(a). It is seen that the chaotically
moving particles can penetrate upstream a double distance compared with that of the reflected
particles moving regularly without collisions (compare curves 3 and 5). Note that increasing
the free stream particle concentration or increasing the particle radius results in the same effect.
Our calculations showed that the chaotically moving particles of radius rp = 10 lm leave the
shock layer and enter the area of undisturbed flow in front of the bow shock wave.

An important parameter characterizing the role of inter-particle collisions is the local Knudsen
number in the ‘‘gas’’ of particles, Knp, which is defined by
Knp ¼
kp
R
; kp ¼

np
2mp

ffiffiffiffiffiffiffiffiffi
½v21�1

q
. ð37Þ
Here kp is the mean free path of dispersed particles between collisions with each other, mp is the
frequency of inter-particle collisions in a unit volume of gas–particle mixture. The distribution
of Knp along the stagnation streamline in the shock layer is shown in Fig. 2(b). It is seen that
the local Knudsen number and, hence, the mean free path of particles can vary within very wide
limits (a hundred times and more) across the near-wall layer of chaotically moving and colliding



Fig. 3. Contours of constant relative particle volume fraction ~ap ¼ ap=ap1. rp = 1 lm. (a) Without collisions between
particles, (b)–(d) with collisions. (a), (c) ap1 = 10�5; (b) ap1 = 3 · 10�6; (d) ap1 = 3 · 10�5.
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particles. In those cases that the inter-particle collisions are essential in the flow, the local Knud-
sen number decreases monotonically towards the body and has a minimum at the stagnation
point (see curves 3 and 4 in Fig. 2(b)). This means that the collision frequency reaches the highest
value near the stagnation point.

Fig. 3 illustrates the influence of collisions between particles (rp = 1 lm) on the particle concen-
tration field in the shock layer. Fields (b)–(d) in this figure were computed with taking inter-par-
ticle collisions into account. For comparison, field (a) was calculated at ap1 = 10�5 without
collisions, but with taking into account the reverse action of particles on the carrier gas flow.
Due to particle–particle collisions, the singular surfaces labeled AA and BB in the particle concen-
tration field (a) disappear. As the particle volume fraction increases, the singularity BB first dis-
appears for ap1 = 3 · 10�6, and then the singularity AA also disappears (at ap1 = 10�5). As the
layer of colliding particles moves downstream, it is separated from the cylinder surface. Curves 3
and 4 in Fig. 2(a) show that the relative particle concentration in this layer increases with ap1, and
the thickness of this layer decreases as can be seen from comparison between fields (c) and (d).

Calculations of the particle concentration fields were carried out also for fine particles
(rp = 0.3 lm), for particles with radius slightly higher than the critical one (rp = 0.5 lm) and
for large particles (rp = 2 lm and 3 lm). The fields for rp = 0.5 lm and rp = 2 lm inside the whole
shock layer are shown in Fig. 4. The detailed structure of the particle concentration field inside the
cylinder boundary layer is presented in Fig. 5 for particles with rp = 0.3 lm, 0.5 lm and 1 lm.

Fine particles move practically without collisions and, hence, both the collisional and collision-
less particle phase flow models yield very close results everywhere, see (a) and (b) in Fig. 5. More-
over, comparison of fields (a) and (c) in Fig. 4 and (c) and (d) in Fig. 5 shows that the
concentration patterns of particles with radius even slightly larger than rp*, calculated with and
without collisions, are also very close everywhere except in the boundary layer. In contrast, for
coarse-grained particles (rp > 1 lm) the collisions modify the particle phase flow field very
strongly everywhere (compare patterns (b) and (d) in Fig. 4, and also (e) and (f) in Fig. 5).

In the model of gas–particle interaction (see Section 2.3) the effects of inertia, compressibility
and rarefaction in the flow over a particle were taken into account. To clarify the role of these
effects, which are characterized by the particle Reynolds number Re1, Mach number M1, and
Knudsen number Kn1, respectively, we kept track of values of Re1, M1 and Kn1 for every particle
moving in the shock layer. The Knudsen number Kn1 is defined by Kn1 = kg/rp, where
kg ¼ 1:255l=ðq

ffiffiffiffiffiffiffiffi
RT

p
Þ is the free path of molecules near a particle (see, e.g., Kogan, 1967). The

results for incident particles moving near the stagnation streamline are discussed below.
For particles of radius rp 6 1 lm the Reynolds number does not exceed 40. For larger particles

(1 lm < rp 6 3 lm) the value of Re1 outside the boundary layer does not exceed 60, whereas inside
the boundary layer it ranges up to 180 for particles of radius rp = 3 lm when they reach the cyl-
inder surface. The latter effect is caused by an increase in gas density and a decrease in gas tem-
perature and, hence, in viscosity coefficient l, inside the boundary layer towards the ‘‘cold’’
surface. As it follows from these data, the inertial effects can be very essential in the shock layer.
It is well known that an unsteady separated flow with a large-scale vortex structure in the wake
behind a spherical particle arises if Re1 P 200. At lower Reynolds number, a separated bubble of
restricted volume is attached to the back part of the particle. This bubble disappears and a non-
separated flow is observed at Re1 6 5. Thus, for the considered flow parameters, particles move
inside the shock layer with attached separated bubbles or without flow separation.



Fig. 4. Contours of constant relative particle volume fraction ~ap ¼ ap=ap1. (a), (c) rp = 0.5 lm; (b), (d) rp = 2 lm.
ap1 = 10�5; (a), (b) without collisions between particles, (c), (d) with collisions.
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Fig. 5. Contours of constant relative particle volume fraction ~ap ¼ ap=ap1 inside the boundary layer. The angular
location h is measured from the stagnation point as shown in (a). ap1 = 10�5. (a), (c), (e) without collisions between
particles, (b), (d), (f) with collisions. (a), (b), rp = 0.3 lm; (c), (d), rp = 0.5 lm; (e), (f) rp = 1 lm.
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Particles of all sizes entering the shock layer have a high subsonic relative velocity just behind
the bow shock wave. As particles move towards the cylinder surface, the Mach number M1 can
increase, decrease, or vary non-monotonically. For large particles (rp P 3 lm), M1 increases, for
fine particles (rp 6 0.3 lm) M1 decreases. In the intermediate range of rp, M1 first decreases and
then increases due to the decrease in sound speed in the boundary layer on the ‘‘cold’’ wall. Thus
the effect of compressibility on the gas–particle interaction can therefore be very important.

The Knudsen number Kn1 of a particle moving from the shock wave to the body is weakly
decreasing. For fine particles, the flow regime is transitional, e.g., Kn1 is of order 1 for rp = 0.3 lm,
where as with increasing rp the regime becomes first slipping (e.g., Kn1 of order 0.1 for rp = 3 lm)
and then close to continuum. Therefore, the rarefaction effects are important and must be taken
into account.

The kinetic model described in Section 2.2 and the DSMC technique used for the simulation of
collisions between particles are based, among others, on the assumption that the mean free path of
particles kp is much less than the momentum response length kd. The relation between these
lengths was a subject of special study in our calculations.

Consider the particle momentum and thermal response lengths kd and kt, defined as the dis-
tances at which the relative particle velocity and the difference between gas and particle temper-
atures decrease by a factor e = 2.718 . . . More exactly, kd and kt are determined in every flow
point from the Cauchy problem for a particle moving in a stagnant gas with initial velocity
and temperature equal to the instantaneous values of the relative velocity and temperature at
the given point. Such momentum and thermal response distances were calculated at the axis of
symmetry directly behind the bow shock, and the results are shown by the solid curves in
Fig. 6(a). For comparison, kd and kt were calculated for the Stokes flow over a particle
(CD = 24/Re1 and Nup = 2), an approximation widely used for estimates, and the results are pre-
sented in the same figure (see dashed curves). For the given flow parameters and particles, we have
Fig. 6. (a) Dynamic (kd) and thermal (kt) relaxation lengths of particles just behind the bow shock on the stagnation
streamline versus particle radius rp: solid curves correspond to CD, given by Henderson correlations and Nup by
formula (13); dashed curves correspond to the Stokes� law CD = 24/Re1 and Nup = 2. (b) Local Knudsen number Knp
at the stagnation point versus particle radius rp: curve 1, ap1 = 10�5; 2, ap1 = 3 · 10�6.
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kt > kd and kt/kd � const. The solid curve for kd can be approximated by the power function
kd/R � (rp/R)

3/2, whereas the dashed curve corresponding to the Stokes flow is better represented
by kd/R � (rp/R)

2. The Stokes flow model can be observed to yield underestimated values of kd
and kt for small particles and overestimated ones for large particles.

As it follows from Fig. 2(b), the most significant effect of inter-particle collisions takes place in
the stagnation region. The smallest value of the local Knudsen number Knp is obtained at the stag-
nation point. The dependence of this value on the particle radius, all other parameters being fixed,
is plotted in Fig. 6(b). For rp P rp* Knp decreases with decreasing rp. Such a behavior can be
explained by an estimation of kp derived from the elementary kinetic theory. In fact, we have

mp � n2pr
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðv1 � upÞ2�1

q
, where up is the macroscopic velocity of the dispersed phase. Substituting

this expression into Eq. (37) and using the estimate ap � npr3p we obtain
Knp �
1

ap1

rp=R
ap=ap1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v21�1

½ðv1 � upÞ2�1

s
.

As it follows from the numerical results, the particle volume fraction ap at the stagnation point
increases with decreasing particle radius rp (for rp P rp*), and, hence, the Knudsen number
decreases according to the last formula.

If rp 6 rp*, then Knp increases with decreasing rp. In the latter case, we have fine particles, and,
theoretically, collisions between them cannot occur. However, in the DSMC technique, collisions
between particles located in the same grid cell can formally occur if these particles have unequal
velocities. Such a situation takes place in the cell adjacent to the stagnation point for fine particles
which change their direction of motion from nearly normal to the wall to tangential. Another rea-
son for the collisions between fine particles in the mentioned cell is that the particle gravity center
cannot near the body surface closer than the particle radius rp. At this distance even particles with
rp 6 rp* have a non-zero wall normal velocity, therefore they can rebound from the body at the
stagnation point, resulting also in that the particles in the adjacent grid cell have unequal velocities
and can collide. An investigation carried out to estimate the influence of this simulation effect on
the computational results showed that such formal collisions between fine particles in the cell near
the stagnation point practically do not influence the fields of all other macroparameters of both
phases because the area where the frequency of collisions is not negligible is restricted, in fact, by a
single near-wall cell.

Comparison of Knp with kd/R for equal particle radii showed that in the range ap1 P 3 · 10�6

the momentum response length kd is several times larger than the particle mean free path kp and,
hence, the fundamental assumption accepted for the derivation of the kinetic equation (6) is valid.

4.3. Influence of particles on the carrier gas flow

Here we consider the question of how the particle phase modifies the gas flow field in the shock
layer. Fig. 7 illustrates such a modification by an example of the field of the local Mach number
M ¼ jvj=

ffiffiffiffiffiffiffiffiffiffi
cRT

p
. The fields (a)–(d) in this figure are obtained for the same governing parameters

as the fields (a)–(d) in Fig. 3. The field (b) in Fig. 7 corresponding to ap1 = 3 · 10�6 is very close
to the one calculated for the pure gas flow, however one can see slight distortions of theMach num-
ber contours near the body surface. This means that the reverse action of the particles begin to play



Fig. 7. Contours of constant local Mach number M ¼ jvj=
ffiffiffiffiffiffiffiffiffiffi
cRT

p
� rp ¼ 1 lm. (a) Without collisions between particles,

(b)–(d) with collisions. (a), (c) ap1 = 10�5; (b) ap1 = 3 · 10�6; (d) ap1 = 3 · 10�5.
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a noticeable role in the flow at ap1 � 3 · 10�6, the particle size and other governing parameters
being fixed. As it follows from Fig. 2(a), the inter-particle collisions begin to play a noticeable role
just at the same ap1. Moreover, analysis of the numerical results shows that the same situation
takes place for particle sizes in the range rp* < rp [ 1 lm. For particles of these sizes the Stokes
number is of order of unity or less (St1 = 4.2 in Figs. 3 and 7). Therefore, for particles whose ra-
dius slightly exceeds the critical one, both effects, i.e. collisions between particles and reverse action
of the dispersed phase on the gas flow, come into play at the same particle concentration ap1 and,
hence, these effects must be taken into account in the two-phase flow model simultaneously. The
situation is quite different for particles of considerably larger radius (rp J 3 lm): in this case,
inter-particle collisions come into play at concentration ap1 about 10 times smaller than the con-
centration for which significant two-way coupling effects begin to take place. Note that estimations
of the maximum concentration of coarse-grained particles for the effects of collisions and reverse
action to be negligible were obtained by Tsirkunov (1993, 2001).

As can be seen by comparing the fields (b), (c) and (d) in Fig. 7, increasing ap1 results in a de-
crease of the distance between the shock wave and the cylinder surface. Inside the near-wall layer,
particles move along the body surface slowly due to their inelastic and frictional collisions with the
body surface or with other particles. As can be seen, particles slow down the gas flow in this layer.
For example, in the case ap1 = 3 · 10�5 the gas flow inside this layer remains fully subsonic up to
the middle cross-section of the cylinder, i.e. up to h = 90�, whereas the pure gas flow becomes
supersonic downstream from h � 50� (the angle h is defined in Fig. 5(a)).

The fields of local Mach number shown in Fig. 7(a) and (c), were obtained at ap1 = 10�5 with-
out and with inter-particle collisions, respectively. The fractures in the Mach number contours in
Fig. 7(a) match the locations of the envelopes of the reflected particle�s trajectories in the collision-
less flow. The relative particle concentration ap/ap1 at these envelopes becomes infinite. Collisions
between particles make these particle concentration singularities disappear and, hence, leads to
smoother gas flow field.

The effect of the dispersed phase on the gas flow inside the cylinder boundary layer is illustrated by
Fig. 8. The profiles of the tangential gas velocity vs are shown in three cross-sections specified by
h = const. Thin curves are for the pure gas flow, while thick and dashed curves correspond to the
carrier gas flow with and without inter-particle collisions, respectively. The particle radius in this
figure is slightly higher than the critical one. The fracture of the dashed curve 1 corresponds to
the upper bound of the layer of reflected particles in this cross-section. The distance between this
bound and the body surface is about three times as large as the boundary layer thickness in the pure
gas flow. In the regionwhere the reflected particles are present, the distribution of vs in the two-phase
flow significantly differs from that in the pure gas flow. As shown by the thick and dashed curves 2
and 3, the profiles of the tangential velocity vs downstream from the stagnation point in the two-
phase flow do not tend to those in the pure gas flow . This means that the particles of near-critical
radius significantly modify the velocity field of the carrier gas not only inside the boundary layer but
also in a much larger region of the flow near the surface. Numerical results for particles of radius
rp < rp* show that even very fine particles modify the carrier gas flow far outside the boundary layer.
This result allows us to conclude that the hypothesis that fine particles do not affect the gas flow out-
side the boundary layer, an assumption used by Osiptsov (1985), is not true.

The comparison between the thick and dashed curves 1 and 2 in Fig. 8 shows that the distribu-
tion of vs inside the boundary layer is qualitatively modified by the inter-particle collisions at



Fig. 8. Distribution of tangential velocity vs in different boundary layer cross-sections. Thin curves, pure gas flow
(ap1 = 0); thick curves, rp = 0.5 lm, ap1 = 10�5, with collisions between particles; dashed curves, rp = 0.5 lm,
ap1 = 10�5, without collisions between particles. Curves 1, h = 15�; 2, h = 45�; 3, h = 75� (angle h is shown in Fig. 5(a)).
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h 6 p/4. In the thin layer adjacent to the surface, the gas velocity vs decreases due to the collisions.
At higher wall distance this velocity is increased by the collisions, up to the region far from the
surface where reflected and chaotically moving particles are absent and collisions do not occur,
as can be seen from the thick and dashed curves 1 which coincide far from the surface.

The modification of the carrier gas flow field causes an increase in the gas pressure p and vis-
cous friction stress sw = lovs/or at the body surface. This is illustrated by Fig. 9 in which the
Fig. 9. Distribution of (a) pressure coefficient ~p ¼ 2ðp � p1Þ=ðq1V
2
1) and (b) friction coefficient ~sw ¼ 2sw=ðq1V 2

1)
along the cylinder surface. Thin curve 1, pure gas flow (ap1 = 0); thick curve 2, rp = 0.5 lm, ap1 = 10�5, with collisions
between particles; dashed curve 3, rp = 0.5 lm, ap1 = 10�5, without collisions between particles.
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distributions of the pressure coefficient ~p ¼ 2ðp � p1Þ=ðq1V
2
1Þ and the friction coefficient

~sw ¼ 2sw=ðq1V
2
1Þ along the cylinder contour are presented for the pure gas flow (curves 1) and

for the flow of gas–particle mixture (curves 2 and 3). It is also seen that taking the inter-particle
collisions into account in the flow model practically does not change the pressure and has a
pronounced effect on the friction distribution. Due to collisions, ~sw increases near the stagnation
region up to h � 30� and decreases downstream.

4.4. Estimation of turbulence generation by particles

In steady-state 2D-flow Eq. (36) can be simplified to the form
o

ox
ðhqiuxkÞ þ

o

oy
ðhqiuykÞ ¼
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� �
; ð38Þ
where ux = hvxi, uy = hvyi. To estimate the distribution of k along the stagnation streamline y = 0
using the preliminary computed fields of the average variables, we assume that the diffusion of k in
the y-direction in the plane of symmetry is negligible, i.e. o(hqimkok/oy)/oy = 0, and expand the
variables in Eq. (38) in terms of the y-coordinate taking into account the symmetry conditions:
k = k0(x) + k2(x)y

2 + . . . , and similarly for ux, hqi,hTi,Pk and ap; for uy, we write
uy = uy1(x)y + uy3(x)y

3 + . . . Substituting these series for the variables into Eq. (38) and taking
y = 0 we obtain an ordinary differential equation for k0(x), which is solved assuming that k0 is
equal to zero at the body surface and just after the shock wave: k0(x) = 0 at x = �R and
x = �(Ds + R), where Ds is the distance between the bow shock and the cylinder along the
stagnation streamline.

Results for the average fluctuating velocity of the fluid, v0rms ¼
ffiffiffiffiffiffiffiffiffiffi
2k=3

p
, are displayed in

Fig. 10(a) and (b), for various rp at fixed ap1 and for various ap1 at fixed rp, respectively.
Generation of turbulent kinetic energy can be seen to take place just behind the shock wave.
For small particles, the level of velocity fluctuations is maximum at this location, and then
decreases towards the cylinder wall, due to the high dissipation rate associated with such small
size particles. On the contrary, the turbulence generated by larger particles is observed to slightly
increase from the shock wave towards the stagnation point, except in the boundary layer, as a
result of particle inertia leading to smaller deceleration and thus to higher relative velocity. It must
be emphasized that the mean relative velocity between fluid and particles just after the shock wave
does not depend on the particle diameter since all particles have the same velocity outside the
shock layer and therefore also just behind the shock. This is the explanation of the peak observed
in Fig. 10 for small particles, keeping in mind that for constant relative velocity, the turbulent
kinetic energy source term in inversely proportional to the particle relaxation time, according
to Eq. (28). In any case, from the proposed estimation the maximum turbulence intensity is found
to be about 2% for ap1 = 10�5 (Fig. 10) and about 3% for ap1 = 3 · 10�5. The effect of such



Fig. 10. Distribution of estimated rms velocity fluctuation of the gas v0rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þk

p
along the stagnation streamline.

(a), ap1 = 10�5, curve 1, rp = 0.3 lm; 2, rp = 0.5 lm; 3, rp = 1 lm; 4, rp = 3 lm. (b), rp = 1 lm, curve 1, ap1 = 10�6; 2,
ap1 = 3 · 10�6; 3, ap1 = 10�5; 4, ap1 = 3 · 10�5.
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fluctuations of the gas velocity upon the particle motion may be quantified by assessing the cor-
responding rms velocity of the solid particles, v0rms;t. A crude estimation can be obtained by means
of the Tchen-Hinze formula expressing the particle velocity variance in terms of the fluid one (see
e.g., Simonin, 1990). For q�

p 	 q, this formula can be written:
ðv0rms;tÞ
2 ¼ ðv0rmsÞ

2 1

1þ sp=s
; ð39Þ
where sp is the particle relaxation time, defined by jfDj = mpjv � v1j/sp, and s is the integral time
scale of the fluid along the particle path, which is assimilated here to the fluid Lagrangian time
scale and approximated by s � 0.2k/e. Since this estimation of s does not account for the crossing
trajectory effect due to the mean relative velocity, the obtained value of v0rms;t can be expected to
overestimate the particle rms velocity induced by the gas turbulence. Applying Eq. (39) with the
numerically predicted rms velocity of the gas, the particle turbulent intensity is found to be
approximately constant within the shock layer, as shown by Fig. 11(a). The maximum value of
v0rms;t=V 1 which is obtained for the smallest particles, is about 3.5 · 10�3. From such an estima-
tion, we can conclude that the effect of turbulence generated by particles is low enough for the
assumptions made in Section 2.4 to be valid.

In the calculations described in Sections 4.2 and 4.3, the particles move chaotically due to ran-
dom collisions between them. The root mean square velocity fluctuations of particles due to col-
lisions v0rms;c can be calculated formally as one of the macroparameters of the dispersed phase using
the average operator (8)
ðv0rms;cÞ
2 ¼ ½ðv1 � upÞ2�1 ¼ ½v21� � u2p. ð40Þ
However, particle trajectories could intersect with each other even if the particles move without
collisions.

Therefore v0rms;c calculated from (40) is not equal to zero even in collisionless particle phase flow.
In order to get a quantity which could characterize the actual chaotic motion of particles due to



Fig. 11. Distribution along the stagnation streamline of estimated rms velocity fluctuation of particles due to (a) gas
turbulence and (b) inter-particle collisions. ap1 = 10�5, curve 1, rp = 0.3 lm; 2, rp = 0.5 lm; 3, rp = 1 lm; 4, rp = 3 lm.
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collisions, we define v0rms;c as the rms velocity fluctuation of particles which undergo one or more
collisions with other particles; in this case the velocity up in the right-hand side of (40) is the
macroscopic velocity of these particles. The distributions of v0rms;c along the stagnation streamline,
shown in Fig. 11(b), are qualitatively similar to the distributions of particle concentration ap/ap1
in the case of collisionless motion of particles (see curve 5 in Fig. 2(a)). The maximum of v0rms;c is
observed near the envelope of the trajectories of particles reflected from the cylinder. Along the
cylinder surface (not shown) the maximum of v0rms;c=V 1 is observed at h > 45� and it is about
17% for particles of radius rp = 3 lm and about 8% for rp = 1 lm. Comparison of the levels of
v0rms;t and v0rms;c displayed in Fig. 11 shows that the rms velocity fluctuation of particles due to col-
lisions v0rms;c is one order of magnitude higher than the estimated rms velocity fluctuation of par-
ticles due to turbulence v0rms;t, except for very fine particles of subcritical radius rp = 0.3 lm.
5. Conclusion

A model of viscous two-phase gas–particle flow over a blunt body has been presented. It takes
into account the inter-particle collisions and the reverse action of the dispersed phase on the car-
rier gas flow. The models used for gas–particle interaction, particle–particle collisions and parti-
cle–wall collisions are described in detail. It should be noted that at present some parameters
entering the flow model, for example the restitution coefficients arn and art in the particle–particle
collision model, can only be estimated but cannot be determined with the desirable accuracy nei-
ther from physical experiments nor from mathematical or numerical modeling. Nevertheless,
some definite conclusions on many key features of the flow considered could be drawn from
the results of the computational simulation.

The numerical study of the dispersed phase and carrier gas flow fields has allowed us to find the
ranges of particle radius rp and free stream particle volume fraction ap1 in which the inter-particle
collisions and the two-way coupling effects play a significant role, and also to understand how the
inter-particle collisions modify the flow structure and some important parameters of both phases.
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The typical flow patterns of both phases in the shock layer and, in particular, inside the boundary
layer have been described. Besides, the gas turbulent kinetic energy generated by particles as well
as the kinetic energy of chaotic motion of particles caused by the flow turbulence have been esti-
mated. The last has been found to be much less than the kinetic energy of the particle chaotic
motion caused by inter-particle collisions.

The collisions between large particles, i.e. in the range of rp P 1 lm in the flow considered, have
a noticeable effect on the flow of the two-phase mixture at very low particle volume fraction.
When ap1 increases from extremely low values, the collisions first modify the dispersed phase flow
structure (at ap J 10�6), and only at much higher particle volume fraction (ap J 10�5) they
have a pronounced effect on the carrier gas flow field. This result is in complete agreement with
the apriori estimates obtained earlier (see Section 1). However, for particles whose radius is close
but slightly larger than the critical value rp*, both effects become essential simultaneously with
increasing ap1. Gas–solid flows over bodies with particles of near-critical radius were not studied
earlier at all. The concentration of such particles near the stagnation point is several times higher
than for coarse-grained particles at the same value of ap1, and such particles have a more strong
effect on the gas flow, particularly on the heat flux from the gas to the body surface. The question
of how particles modify the gas phase heat flux is very important in many applications, but it is
still open and has to be the subject of further study.
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